The long-term strength of continental lithosphere: “jelly sandwich” or “crème brûlée”?

E.B. Burov, Laboratoire de Tectonique, University of Paris 6, 4 Place Jussieu, 75252 Paris Cedex 05, France, evgenii.burov@lgs.jussieu.fr, and A.B. Watts, Department of Earth Sciences, University of Oxford, Parks Road, Oxford OX1 3PR, UK, tony.watts@earth.ox.ac.uk

ABSTRACT
There has been much debate recently concerning the long-term (i.e., >1 m.y.) strength of continental lithosphere. In one model, dubbed jelly sandwich, the strength resides in the crust and mantle, while in another, dubbed crème brûlée, the mantle is weak and the strength is limited to the crust. The different models have arisen because of conflicting results from elastic thickness and earthquake data. We address the problem here by first reviewing elastic thickness estimates and their relationship to the seismogenic layer thickness. We then explore, by numerical thermomechanical modeling, the implications of a weak and strong mantle for structural styles. We argue that, irrespective of the actual crustal strength, the crème-brûlée model is unable to explain either the persistence of mountain ranges or the integrity of the downgoing slab in collisional systems. We conclude that while the crème-brûlée model may apply in some tectonic settings, a more widely applicable model is the jelly sandwich.

INTRODUCTION
The strength of Earth’s outermost layers has been a topic of debate ever since the turn of the last century when Joseph Barrell first introduced the concept of a strong lithosphere that overlies a weak fluid asthenosphere (Barrell, 1914). The concept played a major role in the development of plate tectonics (e.g., Le Pichon et al., 1973), and the question of how the strength of the plates varies spatially and temporally is a fundamental one of wide interest in geology.

One proxy for strength is the effective elastic thickness of the lithosphere, \(T_e\) (see Watts, 2001 and references therein). By comparing observations of flexure in the region of long-term loads such as ice, sediment, and volcanoes to the predictions of simple elastic plate (flexure) models, it has been possible to estimate \(T_e\) in a wide range of geological settings. Oceanic flexure studies suggest that \(T_e\) is in the range of 2–40 km and depends on load and plate age. In the continents, however, \(T_e\) ranges from 0 to 100 km and shows no clear relationship with age.

The results of flexure studies are qualitatively consistent with the results of experimental rock mechanics. The Brace-Goetze failure envelope curves (Goetze and Evans, 1979; Brace and Kohlstedt, 1980), for example, predict that strength increases with depth and then decreases in accordance with the brittle (e.g., Byerlee) and ductile deformation laws. In oceanic regions, the envelopes are approximately symmetric about the depth of the brittle-ductile transition (BDT), where the brittle-elastic and elastic-ductile layers contribute equally to the strength. Since both \(T_e\) and the BDT generally exceed the mean thickness of the oceanic crust (~7 km), the largest contribution to the strength of oceanic lithosphere must come from the mantle, not the crust.

In the continents, the strength envelopes are more complex, and there may be more than one brittle and ductile layer. Despite this, Burov and Diamant (1995) have been able to show that a model in which a weak lower crust is sandwiched between a strong brittle-elastic upper crust and an elastic-ductile mantle accounts for the wide range of \(T_e\) values observed due to the wide variation in composition, geothermal gradient, and crustal thickness possible in continental lithosphere.

Recently, Jackson (2002) challenged this so-called jelly sandwich model for the rheology of continental lithosphere. He stated the model was incorrect, proposing instead a model in which the upper crust is strong, but the mantle is weak. We dub this here the “crème-brûlée” model (Fig. 1). Jackson (2002) bases his model on the observations of Maggi et al. (2000), which suggest that earthquakes in the continents are restricted to a single layer (identified as the seismogenic thickness, \(T_e\)) in the upper brittle part of the crust and are either rare or absent in the underlying mantle.

It is well known that experimental rock mechanics data are based on relatively low temperatures and pressures and strain rates that are orders of magnitude greater than those that apply to the lithosphere (~10^−6–10^−9 s−1 compared to ~10^−17–10^−15 s−1). Hence, it is not really possible to use these data to distinguish between different rheological models (e.g., Rutter and Brodie, 1991). We therefore take a different approach. First, we review the \(T_e\) estimates because they, we believe, best reflect the integrated strength of the lithosphere. Then, we use numerical models to test the stability and structural styles associated with rheological models.

In order to focus the debate, we limit our study to the two rheological models considered by Jackson (2002): crème brûlée and jelly sandwich. This is not intended to exclude other models. We regard crème brûlée as including all models with a weak mantle and jelly sandwich as all models with a strong mantle, not just those with a weak lower crust. The effect of strong, rather than weak, lower crust depends on its strength with respect to the mantle. If the mantle is weaker than the lower crust, and the crust is not strong at the Moho depth, then the system is mechanically decoupled (e.g., upper panel, Fig. 1C) and we obtain a plate with a strength that is not significantly different from crème brûlée. In contrast, if the mantle is stronger than the lower crust, and the crust is strong at the Moho depth, then the system is coupled (e.g., lower panel, Fig. 1C), and this yields a plate that is capable of considerable strength.
Figure 1. Schematic diagram illustrating different models for the long-term strength of continental lithosphere. In the crème-brûlée model, the strength is confined to the uppermost brittle layer of the crust, and compensation is achieved mainly by flow in the weak upper mantle. In the jelly sandwich model, the mantle is strong and the compensation for surface loads occurs mainly in the underlying asthenosphere. (A) Models of deformation. Arrows schematically show the velocity field of the flow. (B) Brace-Goetze failure envelopes for a thermotectonic age of 150 Ma, a weak, undried granulite lower crust, a uniform strain rate of 10^{-15} s$^{-1}$, and either a dry (jelly sandwich) or wet (crème brûlée) olivine mantle. H_e is the short-term mechanical thickness of the lithosphere; T_e is the long-term elastic thickness. Other parameters are as given in Tables 1 and 2. The two envelopes match those in Figures 5B and 5D of Jackson (2002). They yield a T_e of 20 km (e.g., Burov and Diament, 1995), which is similar to the thickness of the most competent layer. This is because the competent layers are mechanically decoupled by weak ductile layers and so the inclusion of a weak lower crust or strong mantle contributes little to T_e. (C) Brace-Goetze failure envelopes for a thermotectonic age of 500 Ma. Other parameters are as in (B) except that a strong, dry, Maryland diabase has been assumed for the lower crust. The two envelopes show other possible rheological models: in one, the upper and lower crusts are strong and the mantle is weak (upper panel); in the other, the upper and lower crusts and the mantle are strong (lower panel). The assumption of a strong lower crust in the weak mantle model again contributes little to T_e because of decoupling, although T_e would increase from 20 to 40 km if the upper crust was strong at its interface with the lower crust. In contrast, a strong lower crust contributes significantly to the T_e of the strong mantle model. This is because the lower crust is strong at its interface with the mantle and so the crust and mantle are mechanically coupled.

TABLE 1. SUMMARY OF THERMAL AND MECHANICAL PARAMETERS USED IN MODEL CALCULATIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal</td>
<td></td>
</tr>
<tr>
<td>Surface temperature (0 km depth)</td>
<td>0 °C</td>
</tr>
<tr>
<td>Temperature at base of thermal lithosphere</td>
<td>1330 °C</td>
</tr>
<tr>
<td>Thermal conductivity of crust</td>
<td>2.5 Wm$^{-1}$ °C$^{-1}$</td>
</tr>
<tr>
<td>Thermal conductivity of mantle</td>
<td>3.5 Wm$^{-1}$ °C$^{-1}$</td>
</tr>
<tr>
<td>Thermal diffusivity of mantle</td>
<td>10$^{-6}$ m$^{-1}$ s$^{-1}$</td>
</tr>
<tr>
<td>Radiogenic heat production at surface</td>
<td>9.5 × 10$^{-12}$ W m$^{-2}$</td>
</tr>
<tr>
<td>Radiogenic heat production decay constant</td>
<td>10 km</td>
</tr>
<tr>
<td>Thermo-tectonic age of the lithosphere</td>
<td>150 Ma (Fig. 1B); 500 Ma (Fig. 1C)</td>
</tr>
<tr>
<td>Mechanical</td>
<td></td>
</tr>
<tr>
<td>Density of upper crust</td>
<td>2700 kg m$^{-3}$</td>
</tr>
<tr>
<td>Density of lower crust</td>
<td>2900 kg m$^{-3}$</td>
</tr>
<tr>
<td>Density of mantle</td>
<td>3330 kg m$^{-3}$</td>
</tr>
<tr>
<td>Density of asthenosphere</td>
<td>3310 kg m$^{-3}$</td>
</tr>
<tr>
<td>Lamé elastic constants λ, G (here, $\lambda = G$)</td>
<td>30 GPa</td>
</tr>
<tr>
<td>Byerlee’s law—Friction angle</td>
<td>30°</td>
</tr>
<tr>
<td>Byerlee’s law—Cohesion</td>
<td>20 MPa</td>
</tr>
</tbody>
</table>

TABLE 2. SUMMARY OF DUCTILE PARAMETERS ASSUMED IN MODEL CALCULATIONS*

<table>
<thead>
<tr>
<th>Composition</th>
<th>Pre-exponential stress constant, A (MPa$^{-1}$ s$^{-n}$)</th>
<th>Power law exponent, n</th>
<th>Activation energy, Q (kJ mol$^{-1}$)</th>
<th>Figure 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper crust</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wet quartzite</td>
<td>1.1×10^{10}</td>
<td>4</td>
<td>223</td>
<td>B, C</td>
</tr>
<tr>
<td>Lower crust</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry Maryland diabase</td>
<td>8 ± 4</td>
<td>4.7 ± 0.6</td>
<td>485 ± 30</td>
<td>C</td>
</tr>
<tr>
<td>Undried Plgictonei</td>
<td>1.4×10^1</td>
<td>4.2</td>
<td>445</td>
<td>B</td>
</tr>
<tr>
<td>Mantle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry olivine</td>
<td>4.85×10^7</td>
<td>3.5</td>
<td>535</td>
<td>B, C</td>
</tr>
<tr>
<td>Wet olivine</td>
<td>4.17</td>
<td>4.48</td>
<td>498</td>
<td>B, C</td>
</tr>
</tbody>
</table>

*The failure envelopes in this paper match those in Jackson (2002); the Jackson (2002) envelopes are based on Figure 4 in Mackwell et al. (1998), who did not list all the parameters, referring instead to primary references. We therefore list here the parameters we have used.
raphy data show, however, that when the Bouguer coherence sphere resides in the crust, not the mantle. Thickness are comparable to the seismogenic layer thickness, continental coherence method (e.g., Forsyth, 1985; Cochran, 1980, and references therein). The subsequent development of more robust methods of determining T_e using a Bouguer coherence method (e.g., Forsyth, 1985, Lowry and Smith, 1994), however, has yielded values more compatible with forward modeling (Fig. 2).

Recently, McKenzie and Fairhead (1997) argued that most previous continental T_e estimates based on the Bouguer coherence (spectral) method are overestimates rather than true values. They used a free-air admittance method to argue that continental T_e was low, <25 km. Since their estimates of the elastic thickness are comparable to the seismogenic layer thickness, T_e, they proposed that the strength of the continental lithosphere resides in the crust, not the mantle.

Tests with synthetic and observed gravity anomaly and topography data show, however, that when the Bouguer coherence and free-air admittance methods are similarly formulated, they yield the same results; namely, that continental T_e ranges from a few km to >70 km and that it varies spatially over relatively short (~100 km) horizontal scales (e.g., Pérez-Gussinyé and Watts, 2005).

While T_e values that exceed the local thickness of the crust do not indicate which layer, crust or mantle, is strong (Burrow and Diament, 1995), they imply high mantle strength. For example, the Bouguer anomaly associated with the flexure of the Indian shield beneath the Ganges foreland basin by the load of the Himalaya requires a T_e of ~70 km (Fig. 3), which is significantly higher than the local crustal thickness of ~40 km. It is difficult using the Brace-Goetze failure envelopes to explain such high values without invoking a significant contribution to the strength from the subcrustal mantle.

Figure 2. Histograms showing continental T_e estimates based on forward and inverse (i.e., spectral) gravity anomaly modeling methods. The histograms are based on data in Tables 5.2 and 6.2b of Watts (2001) and references therein. The data reflect a mix of tectonic settings. The spectral estimates mainly reflect old cratons, but include orogenic belts and rifts. The forward estimates are mainly from foreland basins. They reflect mainly rifts, since their mechanical properties are usually inherited during foreland basin formation, but include old cratons. The two modeling methods yield similar results and show that continental lithosphere is characterized by both low and high T_e values. In general, low values correlate with rifts, intermediate values with orogenic belts, and high values with old cratons. N—number of estimates.

In oceanic regions, forward and inverse models do yield similar T_e values. This is exemplified along the Hawaiian-Emperor seamount chain in the Pacific Ocean. Forward modeling reveals a mean T_e of 25 ± 9 km, while inverse (spectral) modeling using a free-air admittance method obtains 20–30 km (Watts, 1978). When the T_e estimates are plotted as a function of load and plate age, they yield the same result: T_e increases with age of the lithosphere at the time of loading, small (2–6 km) over young lithosphere and large over old lithosphere (>30 km).

In continental regions, the two modeling approaches have yielded different results. The earliest spectral studies, for example, recovered T_e values that were significantly smaller than those derived from forward modeling (see Cochran, 1980, and references therein). The subsequent development of more robust methods of determining T_e using a Bouguer coherence method (e.g., Forsyth, 1985, Lowry and Smith, 1994), however, has yielded values more compatible with forward modeling (Fig. 2).

Recently, McKenzie and Fairhead (1997) argued that most previous continental T_e estimates based on the Bouguer coherence (spectral) method are overestimates rather than true values. They used a free-air admittance method to argue that continental T_e was low, <25 km. Since their estimates of the elastic thickness are comparable to the seismogenic layer thickness, T_e, they proposed that the strength of the continental lithosphere resides in the crust, not the mantle.

Tests with synthetic and observed gravity anomaly and topography data show, however, that when the Bouguer coherence and free-air admittance methods are similarly formulated, they yield the same results; namely, that continental T_e ranges from a few km to >70 km and that it varies spatially over relatively short (~100 km) horizontal scales (e.g., Pérez-Gussinyé and Watts, 2005).

While T_e values that exceed the local thickness of the crust do not indicate which layer, crust or mantle, is strong (Burrow and Diament, 1995), they imply high mantle strength. For example, the Bouguer anomaly associated with the flexure of the Indian shield beneath the Ganges foreland basin by the load of the Himalaya requires a T_e of ~70 km (Fig. 3), which is significantly higher than the local crustal thickness of ~40 km. It is difficult using the Brace-Goetze failure envelopes to explain such high values without invoking a significant contribution to the strength from the subcrustal mantle.

Figure 3. Comparison of observed and calculated Bouguer gravity anomalies along a profile of the Himalayan foreland at about longitude 80° E. The observed profile is based on GEOTEX (UK geophysical consultancy) Southeast Asia Gravity Project (SEAGP) gravity data. The calculated profile is based on a discontinuous (i.e., broken) elastic plate model, a load comprising the topography (density = 2650 kg m⁻³) above sea level between the Main Boundary Thrust (MBT) and plate break (gray shaded region) and the material (density = 2650 kg m⁻³) that infills the flexure (density = 2650 kg m⁻³); a mantle density of 3330 kg m⁻³; and elastic thickness, T_e of 70 km, Jordan and Watts (2005) have shown that this combination of load and elastic thickness parameters yields the best fit to the observed Bouguer anomaly. The dashed line shows the calculated Bouguer anomaly for the same load, but with T_e = 40 km, which is the value preferred by McKenzie and Fairhead (1997). The difference between the observed and calculated Bouguer anomaly for this T_e is, however, up to ~70 mGal beneath the load and up to ~30 mGal in flanking regions. The inset shows the root mean square (RMS) difference between the observed and calculated Bouguer anomaly for $0 < T_e < 180$ km.
Irrespective of the different methodologies, it is clear from Figure 2 that \(T_s \) can be high and may well exceed not only the seismogenic layer thickness, \(T_s \) (typically 10–20 km), but also the local crustal thickness. We are not surprised by this result. \(T_s \), reflects, we believe, the long-term integrated strength of the lithosphere, while \(T_s \) is representative of the strength of the uppermost of the crust on short time scales. It is difficult to use the failure envelopes to predict the actual depth to which seismicity should occur. However, if we assume that Byerlee’s law is applicable to great depths, then the BDT increases from 15–25 km for the relatively low strain rates of flexure to 50–70 km for relatively high seismic strain rates. We attribute the general absence of mantle earthquakes at these latter depths to the lack of sufficiently large tectonic stresses (\(>2 \text{ GPa} \)) to generate sliding.

SIMPLE PHYSICAL CONSIDERATIONS

The crème-brûlée and jelly sandwich models imply fundamental differences in the mechanical properties of mantle lithosphere. In the crème-brûlée model, for example, the mantle lithosphere is mechanically indistinguishable from asthenosphere, which suggests a very low viscosity. Here, we explore the stability of mantle lithosphere by posing the question “What do the different rheological models imply about the persistence of topography for long periods of geological time?”

The mean heat flow in Archean cratons is \(\approx 40 \text{ mW m}^{-2} \), which increases to \(\approx 60 \text{ mW m}^{-2} \) in flanking Phanerozoic orogenic belts (Jaupart and Mareschal, 1999). As Pinet et al. (1991) have shown, a significant part of this heat flow is derived from radiogenic sources in the crust. Therefore, temperatures at the Moho are relatively low (\(\approx 400–600 ^\circ \text{C} \)). The mantle must maintain a fixed, relatively high, viscosity that prevents convective heat advection to the Moho. Otherwise, surface heat flow would increase to \(>150 \text{ mW m}^{-2} \), which would be the case in an actively extending rift (e.g., Sclater et al., 1980). Since heat flow this high is not observed in cratons and orogens, a thick, cool, stable mantle layer should remain that prevents direct contact between the crustal part of the lithosphere and the convective upper mantle.

The negative buoyancy of the mantle lithosphere at subduction zones is widely considered as a major driving force in plate tectonics. The evidence that the continental mantle is \(\approx 20 \text{ kg m}^{-3} \) denser than the underlying asthenosphere and is gravitationally unstable has been reviewed by Stacey (1992), among others. Although this instability is commonly accepted for Phanerozoic lithosphere, there is still a debate about whether it applies to the presumably Mg-rich and depleted cratonic lithospheres. Irrespective, volumetric seismic velocities, which are generally considered a proxy for density, are systematically higher in the lithosphere mantle than in the asthenosphere. Depending on its viscosity, the mantle lithosphere therefore has the potential to sink as the result of a Rayleigh-Taylor (RT) instability (e.g., Houseman et al., 1981).

We can estimate the instability growth time (i.e., the time it takes for a mantle root to be amplified by \(e \) times its initial value) using Chandrasekhar’s (1961) formulation. In this formulation, a mantle Newtonian fluid layer of viscosity, \(\eta \), density, \(\rho_m \), and thickness, \(d \), is placed on top of a less dense fluid asthenospheric layer of density, \(\rho_a \), and the same thickness. (We note that this formulation differs from that of Conrad and Molnar [1997] who used a fluid layer that is placed on top of a viscous half-space. However, both formulations are valid for instability amplitudes \(< d \). The most rapidly growing instability wavelength, \(\lambda \), is \(A \), where \(2.5 < A < 3.0 \) and the corresponding growth time, \(t_{sw} \), is \(\frac{2\pi\eta(\rho_m - \rho_a)g}{3d^2} \), where \(6.2 < B < 13.0 \) and \(g \) is average gravity. We can evaluate \(t_{sw} \) for a particular \(\eta \) by assuming \((\rho_m - \rho_a) = 20 \text{ kg m}^{-3} \) and \(80 < d < 100 \text{ km} \). If the continental mantle can support large stresses (>2 GPa) and has a high viscosity (\(10^{22}–10^{24} \text{ Pa s} \)), as the jelly sandwich model implies, then \(t_{sw} \) will be long (>0.05–2 b.y.). If, on the other hand, the stresses are small (0–10 MPa) and the viscosity is low (\(10^{12}–10^{20} \text{ Pa s} \)), as the crème-brûlée model suggests, then it will be short (0.2–2.0 m.y.).

The consequence of these growth times for the persistence of surface topographic features and their compensating roots or anti-roots are profound. The long growth times in the jelly sandwich model imply that orogenic belts, for example, could persist for up to several tens of m.y. and longer, while the crème-brûlée model suggests collapse within a few m.y.

We have so far considered a Newtonian viscosity and a large viscosity contrast between the lithosphere and asthenosphere. However, a temperature-dependent viscosity and power law

![Figure 4. Numerical model set-up. The models assume a free upper surface and a hydrostatic boundary condition at the lower surface (depicted by springs in the figure). (A) The stability test is based on a mountain range height of 3 km and width of 200 km that is initially in isostatic equilibrium with a zero elevation 36-km-thick crust. We disturbed the isostatic balance by applying a horizontal compression to the edges of the lithosphere at a rate of 5 mm yr\(^{-1}\). The displacements of both the surface topography and Moho were then tracked through time. (B) The collision test was based on a continent-continent collision initiated by subduction of a dense, downgoing, oceanic plate. We assumed a normal thickness oceanic crust of 7 km, a total convergence rate of 60 mm yr\(^{-1}\), and a serpentinitized subducted oceanic crust (Rupke et al., 2002). Rheological properties and other parameters are as given in Tables 1 and 2.](image-url)
rheology result in even shorter growth times than the ones derived here for constant viscosity (Conrad and Molnar, 1997; Molnar and Houseman, 2004). Moreover, if either the viscosity contrast is small or a mantle root starts to detach, then Equation (1) in Weinberg and Podladchikov (1995) suggests that the entire system will begin to collapse at a vertical Stokes flow velocity of ~1 mm yr\(^{-1}\) for the jelly sandwich model and ~100–1000 mm yr\(^{-1}\) for the crème-brûlée model. (We note that these flow velocities depend strongly on the sphere diameter, which we assume here to be \(\lambda\)). Therefore, our assumptions imply that a surface topographic feature such as an orogenic belt would disappear in <0.02–2 m.y. for the crème-brûlée model, whereas it could be supported for as long as 100 m.y.–2 b.y. for a jelly sandwich model.

DYNAMICAL MODELS

In order to substantiate the growth times of convective instabilities derived from simple viscous models, we carried out sensitivity tests using a numerical model that allows the equations of mechanical equilibrium for a viscoelasto-plastic plate to be solved for any prescribed rheological strength profile (Poliakov et al., 1993). Similar models have been used by Toussaint et al. (2004), for example, to determine the role that the geotherm, lower crustal composition, and metamorphic changes in the subducting crust may play on the evolution

Figure 5. Tests of the stability of a mountain range using the failure envelopes associated with the jelly sandwich (Figure 5B of Jackson, 2002) and crème-brûlée (Figure 5D of Jackson, 2002) rheological models. The thermal structure is equivalent to that of a 150 Ma plate. (A) Crustal and mantle structure after 10 m.y. has elapsed. (B) The amplitude of the mantle root instability as a function of time. The figure shows the evolution of a marker that was initially positioned at the base of the mechanical lithosphere (i.e., the depth where the strength = 10 MPa). This initial position is assumed to be at 0 km on the vertical plot axis. The solid and dashed lines show the instability for a weak, young (thermomechanical age = 150 Ma) and strong, old (thermomechanical age = 500 Ma) plate, respectively.

Figure 6. Tests of the stability of a continental collisional system using the failure envelopes associated with the jelly sandwich (B—Figure 5B of Jackson, 2002) and crème-brûlée (D—Figure 5D of Jackson, 2002) models. The elastic thickness, \(T_e\), and Moho temperature are ~20 km and 600 °C, respectively, for both models. The figure shows a snapshot at 5 Ma of the structural styles that develop after 300 km of shortening.
of continental collision zones. We ran two separate tests (Fig. 4) using rheological properties that matched the envelopes in Figures 5B and 5D of Jackson (2002). Our aim in using these envelopes, which otherwise yield a similar \(T_e \) (Fig. 1), was to determine what the crème-brûlée and jelly sandwich models imply about the stability of mountain ranges and the structural styles that develop.

Figure 5 shows the results of the stability tests. The figure shows a snapshot of the deformation after 10 m.y. We found that in the crème-brûlée model the crust and mantle already become unstable after 1.5–2.0 m.y. By 10 m.y., the lithosphere disintegrates due to delamination of the mantle followed by its convective removal and replacement with hot asthenosphere. This leads eventually to a flattening of the Moho and tectonic erosion of the crustal root that initially supported the topography. The jelly sandwich model, on the other hand, is more stable, and we found few signs of crust and mantle instability for the duration of the model run (10 m.y.).

Figure 6 shows the results of a collision test. The figure shows a snapshot of the deformation after 300 km of shortening, which at 60 mm yr\(^{-1}\) takes 5 m.y. The jelly sandwich model is stable and subduction occurs by the underthrusting of a continental slab that, with or without the crust, maintains its overall shape. The crème-brûlée model, on the other hand, is unstable. There is no subduction, and convergence is taken up in the suture zone that separates the two plates. The crème-brûlée model is therefore unable to explain those features of collisional systems that require subduction such as kyanite- and sillimanite-grade metamorphism. The jelly sandwich model can explain not only the metamorphism, but also some of the gross structural styles of collisional systems such as those associated with slab flattening (e.g., Western North America—Humphreys et al., 2003), crustal doubling (e.g., Alps—Giese et al., 1982), and arc subduction (e.g., southern Tibet—Boutelier et al., 2003).

CONCLUSIONS
We have shown here that observations of flexure and the results of thermal and mechanical modeling are compatible with the view that the mantle part of the lithosphere is strong and is capable of supporting stresses (and surface and subsurface loads) for long periods of geological time.

Oceanic flexure studies show that \(T_e \) is high and that large loads such as oceanic islands and seamounts are supported, at least in part, by the subcrustal mantle. While the role of the mantle lithosphere in the continents is more difficult to quantify, there is evidence from cratonic regions and both forward and inverse (i.e., spectral) gravity modeling that \(T_e \) is high and can locally significantly exceed the crustal thickness.

We find no difficulty in reconciling the results of seismogenic layer, \(T_e \), and elastic thickness, \(T_s \), studies. While both parameters are proxies for the strength of the lithosphere, they are not the same. \(T_e \) reflects the thickness of the uppermost weak brittle layer that responds on historical time scales to stresses by faulting and earthquakes. \(T_s \), in contrast, reflects the integrated strength of the entire lithosphere that responds to long-term (>10\(^{10}\) yr) geological loads by flexure.

There almost certainly no one type of strength profile that characterizes all continental lithosphere. We have only tested two possible models in this paper. Nevertheless, they are representative and useful. They are based on the same failure envelopes that Jackson (2002) used to argue that the mantle is weak, not strong. Moreover, they allow us to speculate on the stability of other models. The crème-brûlée model considered by Jackson (2002) yields a \(T_e \) of 20 km that is at the high end of the seismogenic layer thickness (typically 10–20 km). We have already shown that the crème-brûlée model is mechanically unstable. Therefore, weaker crème-brûlée models (e.g., ones with a weaker upper crust and \(T_s < 20 \) km) will be even more unstable. The jelly sandwich model of Jackson (2002) yields a \(T_e \) of 20 km that is at the low end of continental \(T_e \) estimates (which, as Fig. 2 shows, may exceed 70 km). We have already shown that this model is stable. Stronger jelly sandwich models (e.g., ones with a strong, coupled, lower crust and \(T_s > 20 \) km) will be even more stable. The wide range of continental \(T_e \) estimates suggest that while the crème-brûlée model may apply to some specific settings (e.g., young, hot, rifts such as parts of the Basin and Range, western USA; the Salton Sea, southern California; and Taupo volcanic zone, north island New Zealand), the jelly sandwich model, and its stronger variants, is more widely applicable (e.g., rifts, orogenic belts, cratons).

Thermomechanical modeling of lithospheric deformation suggests that the persistence of surface topographic features and their compensating roots require that the subcrustal mantle is strong and able to act as both a stress guide and a support for surface loads. It might be thought that it would not matter which competent layer in the lithosphere is the strong one. However, our tests show that the density contrast between the crust and mantle is sufficient to ensure that it is the mantle, rather than the crust, that provides both the stress guide and support. In our view, subduction and orogenesis require a strong mantle layer. We have found this to be true irrespective of the actual strength of the crust. Weak mantle is mechanically unstable and tends to delaminate from the overlying crust because it is unable to resist forces of tectonic origin. Once it does delaminate, hotter and lighter mantle asthenosphere can flow upward to the Moho. The resulting increase in Moho temperature would lead to extensive partial melting and magmatic activity as well as further weakening such that subduction is inhibited and surface topography collapses in a relatively short interval of time.

We conclude that rheological models such as crème brûlée that invoke a weak mantle are generally incompatible with observations. The jelly sandwich is in better agreement and provides a useful first-order explanation for the long-term support of Earth’s main surface features.

ACKNOWLEDGMENTS
The kernel of the numerical code used in Figs. 5 and 6 is based on Parvooz (Poliakov et al., 1993). We thank P. Molnar, D. McKenzie, and S. Lamb for discussions, E. Humphreys, W. Royden, B. Kaus, W. Thatcher, and K. Howard for their constructive reviews, and the Dyetti and the University of Paris 6 visiting professor program for support.

REFERENCES CITED
Two New Position Statements Adopted by GSA Council

Geoscience Data Preservation
Contributor: Jamie Robertson, Chair
Panel Members: Olin Christensen, Linda Gunderson, Christopher Keane, Erni Itó, Robert Schafer, Marvin Carlson, Kerstin Lehniert, and Warren Allmon

Position Statement: The Geological Society of America supports the preservation of geoscience samples and data sets for the public good and urges public and private sector organizations and individuals to routinely catalog and preserve their collections and make them more widely accessible.

Background information and recommendations for implementation of this policy are detailed at www.geosociety.org/aboutus/position9.htm.

Geoscience and Natural Hazards Policy
Contributors: Lou Gilpin, George Linkletter, Co-Chairs
Panel Members: David Applegate, Vic Baker, Susan Cannon, John Costa, Orrin Pilkey

Position Statement: The Geological Society of America (GSA) urges the public, scientists, and policy makers to work together to reduce our vulnerability to natural hazards.

Background information and recommendations for implementation of this policy are detailed at www.geosociety.org/aboutus/position6.htm.

To read GSA’s position statements (2001 to present) and to find out more about how to participate in supporting and implementing these position statements, check out the geology and public policy section of GSA’s Web site. www.geosociety.org/science/govpolicy.htm.

The most effective way to influence the success of GSA’s geology and public policy efforts is to communicate among your colleagues and scientists in related professions, to students and members of the public and media, and with your congressional representatives.